如何推导三次方程求根公式?
将最高项系数化为1后为:x^3+ax^2+bx+c=0
令x=y-a/3,方程化为:y^3+py+q=0
P=b-a^2/3,q=c-ab/3+2a^3/27
令y=u+v代入,得:u^3+v^3+3uv(u+v)+p(u+v)+q=0
u^3+v^3+q+(u+v)(3uv+p)=0
如果令:u^3+v^3+q=0,3uv+p=0,并求出u,v则可得y=u+v为解.
u^3+v^3=-q
uv=-p/3,u^3v^3=(-p/3)^3=-p^3/27
u^3,v^3为二次方程:z^2+qz-p^3/27=0的解.
得u^3,v^3 =z=(-q±√D)/2,其中 D=q^2+4p^3/27
所以u,v为:z1,z2= 3√z.
令 ω=(-1+i√3)/2,得y的三个解为:
y1=z1+z2
y2=ωz1+ω2z2
y3=ω2z1+ωz2
从而得:
x1=y1-a/3
x2=y2-a/3
x3=y3-a/3
一元三次方程求根公式
一元三次方程求根的公式是ax3+bx2+cx+d=0,即ax^3+bx^2+cx+d=0(a、b、c、d属于R,x为未知数,且a不等于0)方程是指含有未知数的等式。是表示两个数学式(如两个数、函数、量、运算)之间相等关系的一种等式,使等式成立的未知数的值称为解或根。求方程的解的过程称为解方程。通过方程求解可以免去逆向思考的不易,直接正向列出含有欲求解的量的等式即可。方程具有多种形式,如一元一次方程、二元一次方程、一元二次方程等,还可组成方程组求解多个未知数。