等差公式前n项求和公式?
等差数列前N项和公式为:Sn=n(a1+an)/2或Sn=na1+n(n-1)d/2=dn^2/2+(a1-d/2)n
方法是倒序相加
Sn=1+2+3+……+(n-1)+n
Sn=n+(n-1)+(n-2)+……+2+1
两式相加
2Sn=(1+n)+(2+n-1)+(3+n-2)+……+(n-1+2)+(n+1)=(n+1)+(n+1)+(n+1)+……+(n+1)+(n+1)
一共n项(n+1)
2Sn=n(n+1)
Sn=n(n+1)/2
求等差数列的所有公式?
等差数列是常见数列的一种,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差常用字母d表示。等差数列基本公式:末项=首项+(项数-1)×公差项数=(末项-首项)÷公差+1
等差数列是常见数列的一种,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差常用字母d表示。
等差数列基本公式:
末项=首项+(项数-1)×公差
项数=(末项-首项)÷公差+1
首项=末项-(项数-1)×公差
和=(首项+末项)×项数÷2
通项公式
等差数列的通项公式为:an=a1+(n-1)d (1)
前n项和公式
前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2 (2)
以上n均属于正整数.
推论
1.从(1)式可以看出,an是n的一次函数(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0.
2.从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}
3.若m,n,p,q∈N*,且m+n=p+q,则有am+an=ap+aq,Sm-1=(2n-1)an,S2n+1=(2n+1)an+1,Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等.
若m+n=2p,则am+an=2ap
4.其他推论
和=(首项+末项)×项数÷2
项数=(末项-首项)÷公差+1
首项=2和÷项数-末项
末项=2和÷项数-首项
末项=首项+(项数-1)×公差
推论3证明
若m,n,p,q∈N*,且m+n=p+q,则有若m,n,p,q∈N*,且m+n=p+q,则有am+an=ap+aq
如am+an=a1+(m-1)d+a1+(n-1)d
=2a1+(m+n-2)d
同理得,
ap+aq=2a1+(p+q-2)d
又因为
m+n=p+q ;
a1,d均为常数
所以
若m,n,p,q∈N*,且m+n=p+q,则有am+an=ap+aq
注:1.常数列不一定成立
2.m,p,q,n大于等于自然数
等差中项
在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项,且为数列的平均数.
且任意两项am,an的关系为:an=am+(n-m)d
它可以看作等差数列广义的通项公式
标准差计算公式
1、总体标准差=σ=sqrt(((x1-x)^2+(x2-x)^2+……(xn-x)^2)/n);
2、样本标准差=方差的算术平方根=s=sqrt(((x1-x)^2+(x2-x)^2+……(xn-x)^2)/(n-1));
3、标准差公式是一种数学公式。标准差也被称为标准偏差,或者实验标准差。
极差方差标准差公式
方差计算公式:s^2=(1/n)*[(x1-x0)^2+(x2-x0)^2+(xn-x0)^2];极差计算公式:x=xmax-xmin,标准差=方差的算术平方根。
方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。
标准差和方差公式
标准差公式是:s=sqrt(s^2);方差公式是:s^2=[(x1-x)^2+…(xn-x)^2]/n。标准差公式和方差公式是数学统计学中的重要公式。
标准差是一组数值自平均值分散开来的程度的一种测量观念。一个较大的标准差,代表大部分的数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。方差应用于生活中各种事情,方差越小,代表这组数据越稳定,方差越大,代表这组数据越不稳定。
样本标准差计算公式
样本标准差计算公式是√[1/(n-1)Σ(Xi-X)2],标准差(StandardDeviation)是离均差平方的算术平均数的算术平方根,用σ表示。
标准差也被称为标准偏差,或者实验标准差,在概率统计中最常使用作为统计分布程度上的测量依据。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的两组数据,标准差未必相同。
二阶等差数列求和公式是什么
二阶等差数列求和公式是a(n)=An^2+Bn+C,等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列,常用A、P表示。这个常数叫做等差数列的公差,公差常用字母d表示。
等差数列是常见数列的一种,可以用AP表示,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差常用字母d表示。例如:1,3,5,7,9……(2n-1)。等差数列{an}的通项公式为:an=a1+(n-1)d。前n项和公式为:Sn=n*a1+n(n-1)d/2或Sn=n(a1+an)/2。
d(xy)方差有关公式
d(xy)方差有关公式:D(XY)=D(X)D(Y)。方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。
概率论,是研究随机现象数量规律的数学分支。随机现象是相对于决定性现象而言的,在一定条件下必然发生某一结果的现象称为决定性现象。例如在标准大气压下,纯水加热到100℃时水必然会沸腾等。随机现象则是指在基本条件不变的情况下,每一次试验或观察前,不能肯定会出现哪种结果,呈现出偶然性。
初二方差公式是什么
1、若x1,x2,x3……xn的平均数为M,则方差公式可表示为:D(CX)=C2D(X)(方差无负值)。
2、方差公式是一个数学公式,是数学统计学中的重要公式,应用于生活中各种事情,方差越小,代表这组数据越稳定,方差越大,代表这组数据越不稳定。
3、若X、Y相互独立,则,证:记,前面两项恰为D(X)和D(Y),第三项展开后为,当X、Y相互独立时,故第三项为零。
标准离差的计算公式
标准离差的计算公式是标准离差率=标准离差/期望值,标准离差是样本方差的正平方根。设随机变量ξ的数学期望为Eξ,称(ξ-Eξ)2的数学期望为ξ的方差。它是用来表示随机变量与其数学期望之间离散程度的一个量。对于子样x1,x2,…,x,也类似地定义为它的方差,式中Σ为总计的符号,而这个量也反映了子样的离散程度。方差的平方根称为“均方差”、“根方差”或“标准差”。尤其当自由度为n-1时,称为样本方差。S2的正平方根S即样本的标准离差。以样本方差S2来估计总体方差o2在n比较大时,两者相差很小,但当n小时,两者差别颇大。
等差数列的公式有哪些
1、等差数列前n项和公式为:Sn=n*a1+n(n-1)d/2或Sn=n(a1+an)/2。
2、等差数列{an}的通项公式为:an=a1+(n-1)d。
等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列,常用A、P表示。这个常数叫做等差数列的公差,公差常用字母d表示。
几何分布的期望和方差公式推导
几何分布的期望是1/p,方差公式推导为s^2=【(x1-x)^2+(x2-x)^2+。。。。。。(xn-x)^2】/(n),其中x为平均数。
几何就是研究空间结构及性质的一门学科,而且它是数学中最基本的研究内容之一,与分析、代数等等具有同样重要的地位,并且关系极为密切。