等差数列前n项和公式?
等差数列前N项和公式S=(A1+An)N/2 ,等差数列是常见数列的一种,可以用AP表示,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差常用字母d表示。
例如:1,3,5,7,9……(2n-1)。等差数列{an}的通项公式为:an=a1+(n-1)d。前n项和公式为:Sn=n*a1+n(n-1)d/2或Sn=n(a1+an)/2 。注意: 以上整数。
扩展资料
日常生活中,人们常常用到等差数列如:在给各种产品的尺寸划分级别时,当其中的最大尺寸与最小尺寸相差不大时,常按等差数列进行分级。若为等差数列,且有an=m,am=n,则am+n=0。其于数学的中的应用,
可举例:快速算出从23到132之间6的整倍数有多少个,算法不止一种,这里介绍用数列算令等差数列首项a1=24(24为6的4倍),等差d=6;于是令an= 24+6(n-1)<=132 即可解出n=19。
等比数列的求和公式?
等差数列
通项公式:
an=a1+(n-1)d
前n项和:
sn=na1+n(n-1)d/2或sn=n(a1+an)/2
前n项积:
tn=a1^n+b1a1^(n-1)×d+……+bnd^n
其中b1…bn是另一个数列,表示1…n中1个数、2个数…n个数相乘后的积的和
等比数列
通项公式:
an=a1*q^(n-1)
前n项和:
sn=[a1(1-q^n)]/(1-q)
前n项积:
tn=a1^n*q^(n(n-1)/2)
前n项和公式是什么等比数列
等比数列前n项和公式是Sn=a1(1-q^n)/(1-q)=(a1-anq)/(1-q),等比数列是指从第二项起,每一项与它的前一项的比值等于同一个常数的一种数列,常用G、P表示。而数列求和对按照一定规律排列的数进行求和,求Sn实质上是求{an}的通项公式,应注意对其含义的理解,常见的方法有公式法、错位相减法、倒序相加法、分组法、裂项法、数学归纳法、通项化归、并项求和。数列是高中代数的重要内容,又是学习高等数学的基础。
等比数列的前n项和公式是什么
等比数列的前n项和公式是Sn=a1(1-q^n)/(1-q)。
等比数列是指从第二项起,每一项与它的前一项的比值等于同一个常数的一种数列,常用G、P表示。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0),等比数列a1≠0。注:q=1时,an为常数列。
等比数列在生活中也是常常运用的。如:银行有一种支付利息的方式复利。即把前一期的利息和本金加在一起算作本金,在计算下一期的利息,也就是人们通常说的“利滚利”。按照复利计算本利和的公式:本利和=本金×(1+利率)^存期。
等差数列的前n项和公式 是什么
等差数列的前n项和公式:an=a1+(n-1)d=ak+(n-k)*d。等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列,常用A、P表示。这个常数叫做等差数列的公差,公差常用字母d表示。
数列(sequenceofnumber),是以正整数集(或它的有限子集)为定义域的函数,是一列有序的数。数列中的每一个数都叫做这个数列的项。排在第一位的数称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项,以此类推,排在第n位的数称为这个数列的第n项,通常用an表示。
前n项和公式的基本用法
前n项和公式的基本用法有:Sn=n(a1+an)/2、Sn=a1+a2+a3等等。对等差数列、等比数列,求前n项和Sn可直接用等差、等比数列的前n项和公式进行求解。
运用公式求解的注意事项:首先要注意公式的应用范围,确定公式适用于这个数列之后,再计算。
等差前几项求和公式是什么
等差前几项求和公式:an=a1+(n-1)d。等差数列是常见数列的一种,可以用AP表示,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差常用字母d表示。
数列(sequenceofnumber),是以正整数集(或它的有限子集)为定义域的函数,是一列有序的数。数列中的每一个数都叫做这个数列的项。排在第一位的数称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项,以此类推,排在第n位的数称为这个数列的第n项,通常用an表示。
等比数列前n项和公式q是什么
等比数列前n项是前面的数字,q是公比。等比数列是指从第二项起,每一项与它的前一项的比值等于同一个常数的一种数列,常用G、P表示。这个常数叫做等比数列的公比。公比通常用字母q表示(q≠0),等比数列a1≠0。其中{an}中的每一项均不为0。注:q=1时,an为常数列。
等差数列前n项和公式结构特征
等差数列前n项和公式结构特征:an=a1+(n-1)d=am+(n-m)d=pn+k,等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列,常用A、P表示。
这个常数叫做等差数列的公差,公差常用字母d表示。例如:1,3,5,7,9……2n-1。通项公式为:an=a1+(n-1)×d。首项a1=1,公差d=2。前n项和公式为:Sn=a1×n+【n×(n-1)×d】/2或Sn=【n×(a1+an)】/2。注意:以上n均属于正整数。
已知数列{an}的前n项和Sn , 4Sn=an – 1 ,求{an}的通项公式。 (Sn、an 中的n为下标)
- 在线等
- erwhwehgwa
已知数列{an}的通项公式为an=-n2^n,记Sn为此数列的前n和,若对任意正整数n,
- Sn+(n+m)2^(n+1)<0恒成立,则实数m的取值范围是( )求详解,要步骤。谢谢。
- 阿斯顿发放的
已知数列an的前n项和为sn,且a1=1,an+1=13sn,求通项公式
- 求详细过程,手写稿!数学完全不行,我看过别人的回答看不懂,跪谢!
- Sn=3a(n+1) Sn-1=3an an=3(an+1-an) an+1=43an an=(43)^(n-1)Sn=3(an+1) Sn-1=3(a(n-1)+1) an=3(an-a(n-1)) an=32a(n-1) an=(32)^(n-1)